Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 664
Filtrar
1.
An Acad Bras Cienc ; 96(3): e20230474, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38655921

RESUMO

The Pacific Oyster was introduced on Santa Catarina Island in 1987, experiencing processes of selection and genetic breeding since then. Such procedures may have led to the establishment of specific strains, given the saltier and warmer conditions of the Atlantic Ocean. This study employed microsatellite markers to compare allelic patterns of oysters cultivated in Santa Catarina, the USA, and Asia. Specific allelic patterns were revealed in the Santa Catarina samples, reflecting the time of selection/breeding of the oyster in this region. This result supports the effectiveness of the selection/breeding procedures and the demand for protection of this commercially important genetic resource.


Assuntos
Crassostrea , Variação Genética , Repetições de Microssatélites , Repetições de Microssatélites/genética , Animais , Crassostrea/genética , Crassostrea/classificação , Brasil , Variação Genética/genética , Cruzamento , Alelos
2.
Philos Trans R Soc Lond B Biol Sci ; 379(1901): 20230065, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38497271

RESUMO

The Pacific oyster Crassostrea gigas lives in microbe-rich marine coastal systems subjected to rapid environmental changes. It harbours a diversified and fluctuating microbiota that cohabits with immune cells expressing a diversified immune gene repertoire. In the early stages of oyster development, just after fertilization, the microbiota plays a key role in educating the immune system. Exposure to a rich microbial environment at the larval stage leads to an increase in immune competence throughout the life of the oyster, conferring a better protection against pathogenic infections at later juvenile/adult stages. This beneficial effect, which is intergenerational, is associated with epigenetic remodelling. At juvenile stages, the educated immune system participates in the control of the homeostasis. In particular, the microbiota is fine-tuned by oyster antimicrobial peptides acting through specific and synergistic effects. However, this balance is fragile, as illustrated by the Pacific Oyster Mortality Syndrome, a disease causing mass mortalities in oysters worldwide. In this disease, the weakening of oyster immune defences by OsHV-1 µVar virus induces a dysbiosis leading to fatal sepsis. This review illustrates the continuous interaction between the highly diversified oyster immune system and its dynamic microbiota throughout its life, and the importance of this cross-talk for oyster health. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.


Assuntos
Crassostrea , Animais , Crassostrea/genética , Sistema Imunitário
3.
Mar Biotechnol (NY) ; 26(2): 364-379, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38483671

RESUMO

Shell color is one of the shell traits of molluscs, which has been regarded as an economic trait in some bivalves. Pacific oysters (Crassostrea gigas) are important aquaculture shellfish worldwide. In the past decade, several shell color strains of C. gigas were developed through selective breeding, which provides valuable materials for research on the inheritance pattern and regulation mechanisms of shell color. The inheritance patterns of different shell colors in C. gigas have been identified in certain research; however, the regulation mechanism of oyster pigmentation and shell color formation remains unclear. In this study, we performed transcriptomic and physiological analyses using black and white shell oysters to investigate the molecular mechanism of melanin synthesis in C. gigas. Several pigmentation-related pathways, such as cytochrome P450, melanogenesis, tyrosine metabolism, and the cAMP signaling pathway were found. The majority of differentially expressed genes and some signaling molecules from these pathways exhibited a higher level in the black shell oysters than in the white, especially after L-tyrosine feeding, suggesting that those differences may cause a variation of tyrosine metabolism and melanin synthesis. In addition, the in vitro assay using primary cells from mantle tissue showed that L-tyrosine incubation increased cAMP level, gene and protein expression, and melanin content. This study reveals the difference in tyrosine metabolism and melanin synthesis in black and white shell oysters and provides evidence for the potential regulatory mechanism of shell color in oysters.


Assuntos
Crassostrea , Melaninas , Pigmentação , Transcriptoma , Animais , Melaninas/metabolismo , Melaninas/biossíntese , Crassostrea/genética , Crassostrea/metabolismo , Pigmentação/genética , Tirosina/metabolismo , Exoesqueleto/metabolismo , Transdução de Sinais , Perfilação da Expressão Gênica , AMP Cíclico/metabolismo
4.
Theriogenology ; 218: 62-68, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38301508

RESUMO

The mangrove oyster Crassostrea rhizophorae is identified as a potentially valuable species for tropical aquaculture, however, information on the physiological mechanisms of reproduction under laboratory conditions for this species is limited. This study investigated the effects of salinity at different concentrations (15, 20, 25, 30, 35, and 40 g/L) on the induction of germinal vesicle breakdown (GVBD) of oocytes obtained through stripping, the release of polar bodies (PB1 and PB2), and the larval development of the mangrove oyster. The results revealed a relationship between salinity and the percentage of GVBD, with the most effective range being 30-40 g/L within the hydration time frame between 70 and 120 min. The release of 50 % of PB1 was detected within this salinity range, while for the release of 50 % of PB2, the saline treatments of 35 and 40 g/L showed the best results. Overall, the salinity range of 30-40 g/L is suggested as the most suitable of polyploidy induction methodologies through the retention of PB1 or PB2. Regarding larval hatching, while salinities between 25 and 40 g/L presented similar percentages, at 15 g/L no hatching was observed. This study demonstrated that salinity is a key factor in early pre- and post-fertilization stages for the successful reproduction of mangrove oyster in hatcheries and that the percentages of oocyte maturation and artificial fertilization can be optimized by adjusting salinity.


Assuntos
Crassostrea , Animais , Crassostrea/genética , Salinidade , Aquicultura , Larva , Fertilização
5.
Environ Res ; 248: 118213, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38280526

RESUMO

Global ocean salinity is changing under rapid climate change and intensified anthropogenic activity. Increased differences in salinity threaten marine biodiversity, organismal survival, and evolution, particularly sessile invertebrates dwelling in highly fluctuating intertidal and estuarine environments. Comparing the responses of closely related species to salinity changes can provide insights into the adaptive mechanisms underlying inter- and intraspecific divergence in salinity tolerance, but are poorly understood in marine bivalves. We collected wild individuals of four Crassostrea species, in addition to two populations of the same species from their native habitats and determined the dynamics of hydrolyzed amino acids (HAAs) and transcriptional responses to hypersaline stress. In response to hypersaline stress, species/populations inhabiting natural high-salinity sea environments showed higher survival and less decline in HAAs than that of congeners inhabiting low-salinity estuaries. Thus, native environmental salinity shapes oyster tolerance. Notably, a strong negative correlation between the decline in HAAs and survival indicated that the HAAs pool could predict tolerance to hypersaline challenge. Four HAAs, including glutamine (Glu), aspartic acid (Asp), alanine (Ala) and glycine (Gly), were identified as key amino acids that contributed substantially to the emergency response to hypersaline stress. High-salinity-adapted oyster species only induced substantial decreases in Glu and Asp, whereas low-salinity-adapted congeners further incresaed Ala and Gly metabolism under hypersaline stress. The dynamics of the content and gene expression responsible for key amino acids pathways revealed the importance of maintaining the balance between energy production and ammonia detoxification in divergent hypersaline responses among oyster species/populations. High constructive or plastic expression of evolutionarily expanded gene copies in high-salinity-adapted species may contribute to their greater hypersaline tolerance. Our findings reveal the adaptive mechanism of key amino acids in salinity adaptation in marine bivalves and provide new avenues for the prediction of adaptive potential and aquaculture with high-salinity tolerant germplasms.


Assuntos
Crassostrea , Humanos , Animais , Crassostrea/genética , Amônia , Aminoácidos , Meio Ambiente , Ecossistema , Salinidade
6.
Mar Biotechnol (NY) ; 26(1): 125-135, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38217752

RESUMO

The fecundity of triploid female Crassostrea gigas exhibited significant variation and was lower compared to diploid individuals. Previous studies categorized mature stage triploid female C. gigas into two groups: female α, characterized by a high number of oocytes, and female ß, displaying few or no oocytes. To investigate the molecular mechanisms underlying irregular oogenesis and fecundity differences in triploid C. gigas, we performed a comparative analysis of gonad transcriptomes at different stages of gonadal development, including female α, female ß, and diploids. During early oogenesis, functional enrichment analysis between female diploids and putative female ß triploids revealed differently expressed genes (DEGs) in the ribosome and ribosome biogenesis pathways. Expression levels of DEGs in these pathways were significantly decreased in the putative female ß triploid, suggesting a potential role of reduced ribosome levels in obstructing triploid oogenesis. Moreover, to identify regulatory pathways in gonad development, female oysters at the early and mature stages were compared. The DNA repair and recombination proteins pathways were enriched in female diploids and female α triploids but absent in female ß triploids. Overall, we propose that decreased ribosome biogenesis in female triploids hinders the differentiation of germ stem cells, leading to the formation of a large number of abnormal germ cells and ultimately resulting in reduced fecundity. The variation in fertility among triploids appeared to be related to the degree of DNA damage repair during female gonad development. This study offers valuable insights into the oogenesis process in female triploid C. gigas.


Assuntos
Crassostrea , Triploidia , Animais , Feminino , Humanos , Crassostrea/genética , Transcriptoma , Oogênese/genética , Perfilação da Expressão Gênica , Ribossomos/genética
7.
Development ; 151(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38270401

RESUMO

A model organism in developmental biology is defined by its experimental amenability and by resources created for the model system by the scientific community. For the most powerful invertebrate models, the combination of both has already yielded a thorough understanding of developmental processes. However, the number of developmental model systems is still limited, and their phylogenetic distribution heavily biased. Members of one of the largest animal lineages, the Spiralia, for example, have long been neglected. In order to remedy this shortcoming, we have produced a detailed developmental transcriptome for the bivalve mollusk Mytilus galloprovincialis, and have expanded the list of experimental protocols available for this species. Our high-quality transcriptome allowed us to identify transcriptomic signatures of developmental progression and to perform a first comparison with another bivalve mollusk: the Pacific oyster Crassostrea gigas. To allow co-labelling studies, we optimized and combined protocols for immunohistochemistry and hybridization chain reaction to create high-resolution co-expression maps of developmental genes. The resources and protocols described here represent an enormous boost for the establishment of Mytilus galloprovincialis as an alternative model system in developmental biology.


Assuntos
Crassostrea , Mytilus , Animais , Mytilus/genética , Filogenia , Crassostrea/genética , Transcriptoma/genética , Perfilação da Expressão Gênica
8.
Artigo em Inglês | MEDLINE | ID: mdl-38295536

RESUMO

Marine bivalves are economically important and exhibit a remarkable diversity in shell color. The Pacific oyster Crassostrea gigas stands out as an important economic species, with the successful development of four distinct color strains through selective breeding. While previous studies have shed light on the genetic mechanism underlying color segregation, the precise molecular regulatory mechanisms responsible for shell coloration in oysters remains elusive. In this study, we confirmed that the golden phenotype is primarily attributed to pheomelanin by histological and ultrastructural observations. Additionally, we conducted a comparative transcriptome analysis of the black and golden shell color oysters to explore the potential genes and pathways contributing to the golden phenotype in C. gigas. Our results revealed a significant increase in differentially expressed genes in the golden phenotype associated with pathways such as glutathione metabolism, and calcium signaling pathway, suggesting a potential role in the synthesis of pheomelanin. Of particular note, we highlighted the potential role of two-pore channel 2 (TPC2) in modulating tyrosinase activity and melanosomal pH, ultimately determining the shade of pigmentation. Our study in this work provided a preliminary exploration of the mechanism, shedding light on the melanosome microenvironment and shell color.


Assuntos
Crassostrea , Transcriptoma , Animais , Crassostrea/genética , Crassostrea/metabolismo , Fenótipo , Perfilação da Expressão Gênica
9.
Fish Shellfish Immunol ; 145: 109354, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38171431

RESUMO

MicroRNAs (miRNAs) are small non-coding RNA molecules that modulate target-genes expression and play crucial roles in post-transcriptional regulation and immune system regulation. The Hong Kong oyster (Crassostrea hongkongesis), as the main marine aquaculture shellfish in the South China Sea, not only has high economic and ecological value, but also is an ideal model for conducting research on pathogen host interaction. Vibrio harveyi, a Gram negative luminescent marine bacterium, is widely distributed in coastal water environments and can cause large-scale death of C. hongkongesis. However, little in formation is available on the immune regulatory mechanisms of C. hongkongesis infected with V. harveyi. Therefore, we performed microRNA transcriptome analysis for elucidating the immunoregulation mechanism of C. hongkongesis infected with V. harveyi. The results show that a total of 308468208 clean reads and 288371159 clean tags were obtained. 222 differentially expressed miRNAs were identified. A total of 388 target genes that were differentially expressed and negatively correlated with miRNA expression were predicted by 222 DEmiRs. GO enrichment analysis of 388 DETGs showed that they were mainly enriched in the immune-related term of membrane-bounded vesicle, endocytic vesicle lumen, antigen processing and presentation of exogenous peptide antigen via MHC class I, antigen processing and presentation of peptide antigen via MHC class I, and other immune-related term. KEGG enrichment analysis showed that DETGs were mainly enriched in the Complement and coagulation cascades, Herpes simplex virus 1 infection, Bacterial invasion of epithelial cells, Antigen processing and presentation and NOD-like receptor signaling pathway. The 16 key DEmiRs and their target genes form a regulatory network for seven immune-related pathways. These results suggest that V. harveyi infection induces a complex miRNA response with wide-ranging effects on immune gene expression in the C. hongkongesis. This study explored the immune response of C. hongkongesis to V. harveyi infection at the level of miRNAs, which provides new ideas for the healthy culture and selective breeding of C. hongkongesis.


Assuntos
Crassostrea , MicroRNAs , Vibrioses , Vibrio , Animais , MicroRNAs/genética , Transcriptoma , Crassostrea/genética , Vibrio/fisiologia , Perfilação da Expressão Gênica , Peptídeos/genética
10.
Environ Sci Technol ; 58(4): 1865-1876, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38217500

RESUMO

Marine organisms are threatened by the presence of pesticides in coastal waters. Among them, the Pacific oyster is one of the most studied invertebrates in marine ecotoxicology where numerous studies highlighted the multiscale impacts of pesticides. In the past few years, a growing body of literature has reported the epigenetic outcomes of xenobiotics. Because DNA methylation is an epigenetic mark implicated in organism development and is meiotically heritable, it raises the question of the multigenerational implications of xenobiotic-induced epigenetic alterations. Therefore, we performed a multigenerational exposure to an environmentally relevant mixture of 18 pesticides (nominal sum concentration: 2.85 µg·L-1) during embryo-larval stages (0-48 hpf) of a second generation (F1) for which parents where already exposed or not in F0. Gene expression, DNA methylation, and physiological end points were assessed throughout the life cycle of individuals. Overall, the multigenerational effect has a greater influence on the phenotype than the exposure itself. Thus, multigenerational phenotypic effects were observed: individuals descending from exposed parents exhibited lower epinephrine-induced metamorphosis and field survival rates. At the molecular level, RNA-seq and Methyl-seq data analyses performed in gastrula embryos and metamorphosis-competent pediveliger (MCP) larvae revealed a clear F0 treatment-dependent discrimination. Some genes implicated into shell secretion and immunity exhibited F1:F0 treatment interaction patterns (e.g., Calm and Myd88). Those results suggest that low chronic environmental pesticide contamination can alter organisms beyond the individual scale level and have long-term adaptive implications.


Assuntos
Crassostrea , Praguicidas , Poluentes Químicos da Água , Humanos , Animais , Praguicidas/toxicidade , Crassostrea/genética , Crassostrea/metabolismo , Metilação de DNA , Fenótipo , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo
11.
Int J Mol Sci ; 25(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38256110

RESUMO

Increasing evidence confirms that histone modification plays a critical role in preserving long-term immunological memory. Immune priming is a novel form of immunological memory recently verified in invertebrates. Toll-like receptor (TLR) signaling and cytokines have been reported to be involved in the immune priming of the Pacific oyster Crassostrea gigas. In the present study, the expression of Toll-like receptor 3 (CgTLR3), myeloid differentiation factor 88-2 (CgMyd88-2) and interleukin 17-1 (CgIL17-1) was found to be elevated in the hemocytes of C. gigas at 6 h after the secondary stimulation with Vibrio splendidus, which was significantly higher than that at 6 h after the primary stimulation (p < 0.05). A significant increase in histone H3 lysine 4 trimethylation (H3K4me3) enrichment was detected in the promoter region of the CgTLR3 gene at 7 d after the primary stimulation with inactivated V. splendidus (p < 0.05). After the treatment with a histone methyltransferase inhibitor (5'-methylthioadenosine, MTA), the level of H3K4me3 at the promoter of the CgTLR3 gene decreased significantly at 7 d after the primary stimulation with inactivated V. splendidus (p < 0.05), and the expression of CgTLR3, CgMyD88-2 and CgIL17-1 was significantly repressed at 6 h after the secondary stimulation with V. splendidus (p < 0.05). Conversely, the treatment with monomethyl fumarate (MEF, an inhibitor of histone demethylases) resulted in a significant increase in H3K4me3 enrichment levels at the CgTLR3 promoter at 7 d after the primary stimulation (p < 0.05), and the expression of CgTLR3, CgMyD88-2 and CgIL17-1 was observed to increase significantly at 6 h after the secondary stimulation (p < 0.05). These results suggested that H3K4me3 regulated MyD88-dependent TLR signaling in the hemocytes of C. gigas, which defined the role of histone modifications in invertebrate immune priming.


Assuntos
Crassostrea , Desoxiadenosinas , Histonas , Tionucleosídeos , Animais , Hemócitos , Crassostrea/genética , Interleucina-1
12.
Zool Res ; 45(1): 201-214, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38199974

RESUMO

Glycogen serves as the principal energy reserve for metabolic processes in aquatic shellfish and substantially contributes to the flavor and quality of oysters. The Jinjiang oyster ( Crassostrea ariakensis) is an economically and ecologically important species in China. In the present study, RNA sequencing (RNA-seq) and assay for transposase-accessible chromatin using sequencing (ATAC-seq) were performed to investigate gene expression and chromatin accessibility variations in oysters with different glycogen contents. Analysis identified 9 483 differentially expressed genes (DEGs) and 7 215 genes with significantly differential chromatin accessibility (DCAGs) were obtained, with an overlap of 2 600 genes between them. Notably, a significant proportion of these genes were enriched in pathways related to glycogen metabolism, including "Glycogen metabolic process" and "Starch and sucrose metabolism". In addition, genome-wide association study (GWAS) identified 526 single nucleotide polymorphism (SNP) loci associated with glycogen content. These loci corresponded to 241 genes, 63 of which were categorized as both DEGs and DCAGs. This study enriches basic research data and provides insights into the molecular mechanisms underlying the regulation of glycogen metabolism in C. ariakensis.


Assuntos
Crassostrea , Animais , Crassostrea/genética , Estudo de Associação Genômica Ampla/veterinária , Sequenciamento de Cromatina por Imunoprecipitação/veterinária , RNA-Seq/veterinária , Análise de Sequência de RNA/veterinária , Cromatina , Glicogênio
13.
Int J Biol Macromol ; 259(Pt 2): 128964, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38219938

RESUMO

DNA methylation is instrumental in vertebrate sex reversal. However, the mechanism of DNA methylation regulation regarding sex reversal in invertebrates is unclear. In this study, we used whole genome bisulfite sequencing (WGBS) to map single-base resolution methylation profiles of the Pacific oyster, including female-to-male (FMa-to-FMb) and male-to-female (MFa-to-MFb) sex reversal, as well as sex non-reversed males and females (MMa-to-MMb and FFa-to-FFb). The results showed that global DNA methylation levels increase during female-to-male sex reversals, with a particular increase in the proportion of high methylation levels (mCGs >0.75) and a decrease in the proportion of intermediate methylation levels (0.25 < mCGs <0.75). This increase in DNA methylation was mainly associated with the elevated expression of DNA methylase genes. Genome-wide methylation patterns of females were accurately remodeled to those of males after sex reversal, while the opposite was true for the male-to-female reversal. Those findings directly indicate that alterations in DNA methylation play a significant role in sex reversal in Pacific oysters. Comparative analysis of the DNA methylomes of pre- and post- sex reversal gonadal tissues (FMb-vs-FMa or MFb-vs-MFa) revealed that differentially methylated genes were mainly involved in the biological processes of sex determination or gonadal development. However critical genes such as Dmrt1, Foxl2 and Sox-like, which are involved in the putative sex determination pathway in Pacific oysters, showed almost an absence of methylation modifications, varying greatly from vertebrates. Additionally, comparative analysis of the DNA methylomes of sexual reversal and sex non-reversal (FMa-vs-FFa or MFa-vs-MMa) revealed that heat shock protein genes, such as Hsp68-like and Hsp70B, were important for the occurrence of sex reversal. These findings shed light on the epigenetic mechanisms underlying the maintenance of gonadal plasticity and the reversal of organ architecture in oysters.


Assuntos
Fenômenos Biológicos , Crassostrea , Animais , Masculino , Feminino , Metilação de DNA , Crassostrea/genética , Epigênese Genética , Invertebrados
14.
J Appl Genet ; 65(1): 155-165, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37968426

RESUMO

The increasing seawater temperature during summer months frequently results in severe mortalities in the Pacific oyster Crassostrea gigas around the world, becoming one of the most significant problems challenging the oyster farming industry. In northern China, significant recurrent summer losses of C. gigas have occurred, and its impact on oyster aquaculture has increased in recent years. Selective breeding for improved oyster resistance to high temperature could help to reduce this massive mortality, but the extent of genetic variation underlying this trait is currently unknown. In this study, we constructed 38 full-sib families using the wild C. gigas and estimated the genetic parameters by performing two month-long high-temperature challenge experiments (30 ℃). Experiment 1 was performed in March 2022 followed by experiment 2 in June 2022 (spawning season). In both challenge experiments, there were significant differences in survival among families, suggesting that C. gigas has a different ability to survive under heat stress. Notably, significantly greater mortality was observed for experiment 2, which related to reproductive status and may contribute to additional stress. Thermal tolerance was defined using both binary test survival and time of death traits. Heritability estimates for thermal tolerance were low to moderate (0.16-0.36 for experiment 1 and 0.16-0.33 for experiment 2) using both a Bayesian (MCMCglmm) and a likelihood-based (ASReml-R) approach and estimated heritability of the threshold animal model using ASReml-R (0.16) appeared to be lower compared to MCMCglmm (0.31-0.32). Notably, the genetic and phenotypic correlations for thermal tolerance between two experiments were 0.463 (BS) to 0.491 (TD) and 0.510 (family survival), respectively, which suggested a significant re-ranking of the family breeding values in different time periods. Finally, the genetic and phenotypic correlations were low between growth traits (shell height, shell length, and shell width) and thermal tolerance, suggesting that selection for these traits should be conducted separately. This study reports the first estimation of genetic parameters for chronic thermal tolerance in C. gigas and indicates that this trait is heritable and selective breeding for thermal tolerance is a feasible and promising approach to reduce summer mortality.


Assuntos
Crassostrea , Humanos , Animais , Crassostrea/genética , Teorema de Bayes , Funções Verossimilhança , Fenótipo , China
15.
Gen Comp Endocrinol ; 346: 114417, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38030018

RESUMO

The egg-laying hormones (ELHs) of gastropod mollusks were characterized more than forty years ago. Yet, they have remained little explored in other mollusks. To gain insights into the functionality of the ELH signaling system in a bivalve mollusk - the oyster Crassostrea gigas, this study investigates the processing of its ELH precursor (Cragi-ELH) by mass spectrometry. Some of the ELH mature peptides identified in this study were subsequently investigated by nuclear magnetic resonance and shown to adopt an extended alpha-helix structure in a micellar medium mimicking the plasma membrane. To further characterize the ELH signaling system in C. gigas, a G protein-coupled receptor phylogenetically related to ecdysozoan diuretic hormone DH44 and corticotropin-releasing hormone (CRH) receptors named Cragi-ELHR was also characterized functionally and shown to be specifically activated by the two predicted mature ELH peptides and their N-terminal fragments. Both Cragi-ELH and Cragi-ELHR encoding genes were mostly expressed in the visceral ganglia (VG). Cragi-ELH expression was significantly increased in the VG of both fully mature male and female oysters at the spawning stage. When the oysters were submitted to a nutritional or hyposaline stress, no change in the expression of the ligand or receptor genes was recorded, except for Cragi-ELHR only during a mild acclimation episode to brackish water. These results suggest a role of Cragi-ELH signaling in the regulation of reproduction but not in mediating the stress response in our experimental conditions.


Assuntos
Crassostrea , Animais , Masculino , Feminino , Sequência de Aminoácidos , Crassostrea/genética , Crassostrea/metabolismo , Transdução de Sinais , Peptídeos/metabolismo , Hormônios/metabolismo
16.
Protein Expr Purif ; 215: 106408, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38008389

RESUMO

Hexokinases (HKs) play a vital role in glucose metabolism, which controls the first committed step catalyzing the production of glucose-6-phosphate from glucose. Two HKs (CGIHK1 and CGIHK2) from the Pacific oyster Crassostrea giga were cloned and characterized. CGIHK1 and CGIHK2 were recombinantly expressed in Escherichia coli and successfully purified by the Ni-NTA column. The optimum pH of the two enzymes was pH 8.0 and 8.5, respectively. The optimum temperature of the two enzymes was 42 °C and 50 °C, respectively. Both enzymes showed a clear requirement for divalent magnesium and were strongly inhibited by SDS. CGIHK1 exhibited highly strict substrate specificity to glucose, while CGIHK2 could also catalyze other 11 monosaccharide substrates. This is the first report on the in vitro biosynthesis of glucose-6-phosphate by the hexokinases from Crassostrea gigas. The facile expression and purification procedures combined with different substrate specificities make CGIHK1 and CGIHK2 candidates for the biosynthesis of glucose-6-phosphate and other sugar-phosphates.


Assuntos
Crassostrea , Hexoquinase , Animais , Hexoquinase/metabolismo , Crassostrea/genética , Glucose-6-Fosfato/metabolismo , Temperatura , Glucose/metabolismo
17.
Anim Genet ; 55(1): 158-162, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37921232

RESUMO

An important pathogen of concern for Pacific oyster growers in the USA is ostreid herpesvirus 1 (OsHV-1). Currently, oyster stocks exist that are tolerant to OsHV-1; however, it is uncertain if a trade-off exists between their tolerance to OsHV-1 and their growth in different environments. To investigate any potential trade-offs, Pacific oyster families with varying levels of OsHV-1 tolerance were grown in a bay where OsHV-1 is endemic (Tomales Bay, CA) and in a bay where OsHV-1 is absent (Willapa Bay, WA). In Tomales Bay, we found that oysters from OsHV-1 tolerant families grew faster than oysters from OsHV-1 susceptible families, while in Willapa Bay, no statistically significant difference in growth was found between oyster families with different levels of OsHV-1 tolerance observed in Tomales Bay. These findings indicate that Pacific oysters bred to be tolerant to OsHV-1 would not be expected to have a longer time-to-market regardless of the presence of OsHV-1 in the growing environment.


Assuntos
Crassostrea , Herpesviridae , Humanos , Animais , Crassostrea/genética
18.
Genomics ; 116(1): 110757, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38061482

RESUMO

To understand the environmental adaptations among sessile bivalves lacking adaptive immunity, a series of analyses were conducted, with special emphasis on the widely distributed C. ariakensis. Employing Pacbio sequencing and Hi-C technologies, whole genome for each of a C. ariakensis (southern China) and C. hongkongensis individual was generated, with the contig N50 reaching 6.2 and 13.0 Mb, respectively. Each genome harbored over 30,000 protein-coding genes, with approximately half of each genome consisting of repeats. Genome alignment suggested possible introgression between C. gigas and C. ariakensis (northern China), and re-sequencing data corroborated this result and indicated significant gene flow between C. gigas and C. ariakensis. These introgressed candidates, well-represented by genes related to immunity and osmotic pressure, may be associated with environmental stresses. Gene family dynamics modeling suggested immune-related genes were well represented among the expanded genes in C. ariakensis. These outcomes could be attributed to the spread of C. ariakensis.


Assuntos
Crassostrea , Animais , Crassostrea/genética , Sequenciamento Completo do Genoma , China
19.
Virus Res ; 340: 199307, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38160910

RESUMO

Ostreid herpes virus 1 (OsHV-1) has been classified within the Malacoherpesviridae family from the Herpesvirales order. OsHV-1 is the etiological agent of a contagious viral disease of Pacific oysters, C. gigas, affecting also other bivalve species. Mortality rates reported associated with the viral infection vary considerably between sites and countries and depend on the age of affected stocks. A variant called µVar has been reported since 2008 in Europe and other variants in Australia and in New Zealand last decade. These variants are considered as the main causative agents of mass mortality events affecting C. gigas. Presently there is no established cell line that allows for the detection of infectious OsHV-1. In this context, a technique of propidium monoazide (PMA) PCR was developed in order to quantify "undamaged" capsids. This methodology is of interest to explore the virus infectivity. Being able to quantify viral particles getting an undamaged capsid (not only an amount of viral DNA) in tissue homogenates prepared from infected oysters or in seawater samples can assist in the definition of a Lethal Dose (LD) 50 and gain information in the experiments conducted to reproduce the viral infection. The main objectives of the present study were (i) the development/optimization of a PMA PCR technique for OsHV-1 detection using the best quantity of PMA and verifying its effectiveness through heat treatment, (ii) the definition of the percentage of undamaged capsids in four different tissue homogenates prepared from infected Pacific oysters and (iii) the approach of a LD50 during experimental viral infection assays on the basis of a number of undamaged capsids. Although the developped PMA PCR technique was unable to determine OsHV-1 infectivity in viral supensions, it could greatly improve interpretation of virus positive results obtained by qPCR. This technique is not intended to replace the quantification of viral DNA by qPCR, but it does make it possible to give a form of biological meaning to the detection of this DNA.


Assuntos
Azidas , Crassostrea , Herpesviridae , Propídio/análogos & derivados , Viroses , Animais , Herpesviridae/genética , DNA Viral/genética , Capsídeo , Dose Letal Mediana , Crassostrea/genética , Reação em Cadeia da Polimerase
20.
Mol Ecol Resour ; 24(1): e13801, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37186213

RESUMO

Genome assembly can be challenging for species that are characterized by high amounts of polymorphism, heterozygosity, and large effective population sizes. High levels of heterozygosity can result in genome mis-assemblies and a larger than expected genome size due to the haplotig versions of a single locus being assembled as separate loci. Here, we describe the first chromosome-level genome for the eastern oyster, Crassostrea virginica. Publicly released and annotated in 2017, the assembly has a scaffold N50 of 54 mb and is over 97.3% complete based on BUSCO analysis. The genome assembly for the eastern oyster is a critical resource for foundational research into molluscan adaptation to a changing environment and for selective breeding for the aquaculture industry. Subsequent resequencing data suggested the presence of haplotigs in the original assembly, and we developed a post hoc method to break up chimeric contigs and mask haplotigs in published heterozygous genomes and evaluated improvements to the accuracy of downstream analysis. Masking haplotigs had a large impact on SNP discovery and estimates of nucleotide diversity and had more subtle and nuanced effects on estimates of heterozygosity, population structure analysis, and outlier detection. We show that haplotig masking can be a powerful tool for improving genomic inference, and we present an open, reproducible resource for the masking of haplotigs in any published genome.


Assuntos
Crassostrea , Animais , Crassostrea/genética , Genômica/métodos , Análise de Sequência de DNA , Polimorfismo Genético , Tamanho do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...